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Equilibria of a nematic liquid crystal confined between two eccentric cylinders are studied within a purely
director approach. A planar equilibrium configuration competes against a three-dimensional one. A stability
diagram is obtained in terms of both the ratio between the radii of the bounding cylinders and the distance
between their axes. It turns out that the nonplanar minimizer has a structure more complex than that envisaged
in the tensorial approach employed by McKay and Virga �Phys. Rev. E 71, 041702 �2005�� and that the planar
configuration cannot be the absolute minimizer when the outer cylinder becomes a plane wall. The mechanical
actions transmitted by the nematic liquid crystal on both bounding cylinders are computed and compared with
other results available in the literature.

DOI: 10.1103/PhysRevE.74.061703 PACS number�s�: 61.30.Dk, 64.70.Md

I. INTRODUCTION

In the past two decades, experimental techniques based on
the surface force apparatus made it possible to measure
forces between solid objects submerged in liquid crystals. In
their seminal paper, Horn et al. �1� introduced the notion of
structural forces exchanged by solid surfaces through an in-
tervening liquid crystal. These forces reveal the order modu-
lations occurring within a liquid crystal interposed between
rigid bodies, especially in the vicinity of their boundaries,
where the anchoring to a material substrate has the potential
to affect the surface ordering of the liquid crystal molecules
in direct contact with the foreign bodies.

Recently, structural forces have been viewed as special
cases of order forces �2�, which result from more general
alterations of the molecular order, similar to those establish-
ing biaxial states in a defect core �3�. These biaxial states
also arise in the presence of boundary frustration, when an-
tagonistic anchorings are enforced on surfaces brought near
to one another. Upon reducing the distance between the
bounding surfaces, order transitions can be induced in bulk
by bridging antagonistic, uniaxial states through a continuum
of biaxial states: one uniaxial order is thus destroyed, while
the other is being reconstructed. This phenomenon is often
referred to as order reconstruction �4–7�: it can be revealed
by the order force exchanged by surfaces with antagonistic
anchorings. Precisely, it has been shown that order recon-
struction weakens the repulsion between antagonistic anchor-
ings �8�. This force, which in the absence of order recon-
struction would be repulsive at all separations between the
frustrating surfaces, and increasingly so when the separation
is steadily reduced, falls momentarily as a consequence of
order reconstruction when the repelling surfaces are a few
biaxial coherence lengths �b’s apart �with �b in the range of
nanometers�. This lack of monotonicity would induce a
snapping instability in a force-controlled experiment with an
ideal machine that could explore distances comparable with
�b. A similar behavior is also exhibited by the torque trans-
mitted from one anchoring surface to the other �2,8�; actu-

ally, the transition predicted in a torque-controlled experi-
ment is neater, as the torque drops to zero at the transition
and this happens for separations larger than those required by
the force-driven transition.

These predictions were made for a twist cell and a first,
though indirect, experimental confirmation was later found
for the classical surface force apparatus �9�. A geometry
similar to that of the actual experiment was considered in
�10�, where both force and torque transmitted between a cir-
cular cylinder and a flat wall were computed, under the as-
sumption of homeotropic anchoring on both surfaces, i.e.,
with molecules parallel to the surface unit normal. Elemen-
tary symmetry considerations show that this problem is
equivalent to that where two equal cylinders with parallel
axes are drawn close together. This study revealed a lack of
monotonicity in both the force and the torque diagrams—
attributed to curvature frustration rather than to order
reconstruction—and predicted a snapping transition similar
to that found experimentally �9�, but for larger distances.

A previous study �11� had already been concerned with
this problem within the director theory of nematic liquid
crystals: the transmitted force computed for the planar equi-
librium solution—with the director everywhere in the plane
orthogonal to the cylinder’s axis—exhibited a monotonic be-
havior, diverging like 1/�h as the distance h between cylin-
der and wall decreases to zero. It was shown in �10� that
whenever h is smaller than a few times the radius R of the
cylinder the planar director solution is unstable against a
class of biaxial perturbations that render n escaped �12� in
the direction of the cylinder’s axis, so that the asymptotic
behavior of the transmitted force was computed in �11� for a
solution that is unlikely attained in reality when cylinder and
wall are very close to one another. Similarly, the study re-
ported in �10� is not exempt from criticism: the escaped so-
lution was computed within the order tensor theory and bi-
axial states were allowed alongside of the uniaxial ones, but
for computational ease the eigenframe of the order tensor
was constrained within a class of orientations, which, though
supported by intuition, were yet restricted. We wonder
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whether unleashing the tensor eigenframe would remove the
frustration that might have driven the lack of monotonicity in
both the force and torque diagrams of �10�. This state of
affairs demands a deeper study of both elastic force and
torque exchanged by cylinder and wall, to probe the out-
comes of �10,11�. Such a study is the motivation for this
paper, which treats the more general problem of computing
the elastic actions exchanged by two eccentric cylinders en-
closing a nematic liquid crystal with homeotropic anchoring
on both surfaces. We adopt the director description of the
nematic phase, but we do not restrain the class of its possible
orientations. Seen in the perspective of the order-tensor de-
scription, this assumption amounts to freezing a uniaxial or-
der, while leaving the tensor eigenframe completely free.

The paper is organized as follows. In Sec. II we illustrate
the geometry of the problem, and we recall the basic prop-
erties of bipolar cylindric coordinates, widely used below.
We identify a planar equilibrium profile for the director field
n, the local stability of which is studied in Sec. III by a
general stability criterion �13�. The range of stability of this
solution is described in terms of two independent geometric
parameters. Outside this range, the stable equilibrium con-
figuration of n is escaped along the axis of both cylinders;
this configuration is found numerically in Sec. IV. The elastic
actions transmitted to the inner cylinder by the escaped so-
lution are computed numerically in Sec. V. In Sec. VI we
summarize our conclusions and contrast them with those of
the papers that motivated this study �10,11�. Three Appen-
dixes complete the paper: the first collects the details on
cylindric bipolar coordinates needed here; the second out-
lines the numerical methods adopted in this paper, and the
third applies the stability criterion of �13� to derive the bifur-
cation threshold obtained differently in �14� for the special
case of two coaxial cylinders.

II. ECCENTRIC CYLINDERS

In the one-constant approximation, where all bulk elastic
constants have one and the same positive value �, the elastic
free energy stored within a region B filled with liquid crystal
is given by

F�n� ª
�

2
�

B
��n�2dV , �2.1�

where V is the volume measure and n is a unit vector field
representing everywhere the nematic director. Here we take
B as the region between two parallel cylinders of radii ri and
ro�ri, with axes d apart �Fig. 1�. We assume that strong,
homeotropic boundary conditions are imposed on both the
inner and the outer cylinder. The equilibrium configurations
of n solve the Euler equation associated with F:

��n = − �n , �2.2�

where � is the Laplace operator and � is a multiplier ac-
counting for the constraint on the modulus of n. By taking
the inner product of both sides of Eq. �2.2� with n, since
��n�Tn=0, Eq. �2.2� can be recast as

�n + ��n�2n = 0 , �2.3�

which is clearly nonlinear.
As in �10,11�, in solving Eq. �2.3� it is natural to use

cylindric bipolar coordinates, which we now introduce fol-
lowing Appendix A of �15�. The Cartesian coordinates �x ,y�
of a point with bipolar coordinates �� ,�� are �see Fig. 1�

x = c
sinh �

cosh � − cos �

y = c
sin �

cosh � − cos �
, �2.4�

where c�0 is a parameter. The curves �=const form a fam-
ily of nonintersecting coaxial circles. Precisely, the circle �
=�0 has radius c�cosech �0� and is centered at the point with
Cartesian coordinates �c coth �0 ,0�. Moreover, all the circles
in this family surround the point B��c ,0�. The curves �
=�0=const are circular arcs, centered along the y-axis at
�0,c cot �0�, with radius c�cosec �0�. Precisely, for a given
�0� �0,��, Eqs. �2.4� describe an arc with y�0; for the
same �0 augmented by �, Eqs. �2.4� describe the arc with
y�0 on the same circle. All these arcs intersect at B and at
A��−c ,0�. The curves �=const and �=const are mutually
orthogonal so that, if we take �=�o�0 and �=�i�0 to
represent the outer and inner cylinders of the capillary, the
tangent unit vector e� to the circles �=const satisfies the
boundary conditions imposed on the director field n. To re-
produce the geometry of the problem, the parameters �o, �i,
and c must obey

c cosech �o = ro,

c cosech �i = ri ,

c�coth �o − coth �i� = d , �2.5�

with 0��o��i. By setting

FIG. 1. Cross section of the region between two eccentric cyl-
inders with radii ri and ro�ri. The dashed curves are everywhere
tangent to the field e� and they are orthogonal to the lateral bound-
aries of both cylinders. These curves focus at the points B��c ,0�
and A��−c ,0�. O is the origin of the Cartesian coordinates and
C��c+d ,0� lies on the axis of the outer cilynder. The distance
between the inner and outer cylinders is h=ro−ri−d.
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to ª sinh �o, ti ª sinh �i , �2.6�

conditions �2.5� can be written in terms of the dimensionless
parameters

� ª

ro

ri
� 1 and 	 ª

d

ri
� �0,� − 1� �2.7�

as

toro = tiri �2.8a�

��1 + to
2 − �1 + ti

2 = 	 . �2.8b�

Since, by Eq. �2.6�, ti= to�, we can rewrite Eq. �2.8b� as

��1 + to
2 − 	 = �1 + �to��2, �2.9�

whence, after some manipulations, we arrive at

sinh �o =
1

2	�
���� − 	�2 − 1���� + 	�2 − 1� . �2.10�

Once Eq. �2.10� is inserted in Eq. �2.8a�, this also yields �i
and c in terms of � and 	, the only independent geometric
parameters employed below:

sinh �i =
1

2	
���� − 	�2 − 1���� + 	�2 − 1� ,

c =
ri

2	
���� − 	�2 − 1���� + 	�2 − 1� . �2.11�

The distance h between the inner and the outer cylinders is
given by

h = ro − ri − d

or, by rescaling all lengths to ri, by


 ª

h

ri
= � − 1 − 	 . �2.12�

For given � and 	 as in Eq. �2.7�, the eccentric annulus
depicted in Fig. 1 is represented by the inequalities 0��
�2� and �o����i.

The director field n0�e� solves Eq. �2.2� for all admis-
sible values of � and 	, since it follows from Eqs. �A11� and
�A12� of Appendix A that

�e� = −
1

c2 �cosh2 � − cos2 ��e�. �2.13�

In the sequel, we often refer to n0 as the planar solution of
this equilibrium problem. In the next section we study the
local stability of n0, when � and 	 are varied.

III. STABILITY OF THE PLANAR SOLUTION

Here we apply to the planar solution n0�e� the local
stability criterion worked out in �13�. The equation obeyed
by the field u perturbing n0 is central to the application of
this criterion; it reads as

�u + 	� +
�

�

u = 
n0, �3.1�

where

�

�
=

1

c2 �cosh2 � − cos2 ��

and 
 and � are Lagrange multipliers associated with the
constraints

u · n0 = 0 �3.2�

and

�
B

u2dV = 1, �3.3�

respectively. The minimum value �min of � for which there
are solutions to Eq. �3.1� subject to Eqs. �3.2� and �3.3� is
also the minimum attained by the second variation of the
energy functional F at n0 upon the set of functions defined
by Eq. �3.3� �13�. If �min is positive then n0 is locally stable,
if �min is negative then n0 is locally unstable. For a given �,
the solutions to Eq. �3.1� represent director perturbing modes
with a prescribed energy variation. The existence of modes
with negative � reveals an instability in the unperturbed
field.

Since n0�e�, the constraint �3.2� is uniformly accounted
for by taking

u = u�e� + uzez,

and then by setting 
=0 in Eq. �3.1�. We further take B to be
infinite along ez and consider modes independent of z so that
both u� and uz are functions of �� ,��. Thus by Eq. �A13� of
Appendix A,

�u = ��u� −
u�

H
�H�e� +

2

H
���u� � �H� · ez�e� + �uzez,

where

H ª

1

c
�cosh � − cos �� , �3.4�

and the planar gradient �
u� defined in Eq. �A9� has been
replaced by �u� since u� is independent of z. The compo-
nents of Eq. �3.1� in the movable frame �e� ,e� ,ez� are then

�u� + �u� = 0, �3.5a�

��u� � �H� · ez = 0, �3.5b�

�uz + �� +
1

c2 �cosh2 � − cos2 ���uz = 0. �3.5c�

In addition to Eq. �3.3�, where the integral is now reduced
over the cross section B of B, these equations are also subject
to the boundary conditions

�u���B = �uz��B = 0, �3.6�

since all modes must preserve the anchoring of n0.
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The analysis of Eqs. �3.5� can be simplified a great deal
by showing that the component u� alone cannot induce de-
stabilizing modes. Suppose for a contradiction that a nonzero
solution of Eq. �3.5a� exists. By multiplying both sides of
Eq. �3.5a� by u� and then integrating in B we readily arrive at

�
B

�div�u� � u�� − ��u��2 + �u�
2�dA = 0,

where A is the area measure. Finally, use of the divergence
theorem and of the boundary conditions �3.6� yields

�
B

��u�
2 − ��u��2�dV = 0,

whence it follows that ��0. Since a destabilizing mode ex-
ists only if ��0, it requires that u��0, and so Eq. �3.5b� is
identically satisfied.

Setting �=0 in Eq. �3.5c� detects the onset of instability:
the corresponding marginal modes, if existing, represent dis-
tortions of the planar solution n0 that bear no extra elastic
energy up to the second order in the perturbation norm. For
�=0, Eq. �3.5c� becomes

�2uz

��2 +
�2uz

��2 +
cosh � + cos �

cosh � − cos �
uz = 0, �3.7�

subject to the following boundary conditions in �:

uz��,�o� = uz��,�i� = 0, ∀ � � �0,2�� �3.8�

and to periodic boundary conditions in �. Equations �3.7� and
�3.8� were solved numerically �see Appendix B for details�.
Figure 2 shows the path on the �� ,	� plane along which we

found a nonzero solution to these equations. By Eq. �2.7�,
only the set 	��−1 is admissible in the �� ,	� plane. The
path shown in Fig. 2 intersects the line 	=�−1 at �=�*

�8.46 and the line 	=0 at �=e��23.14. The case 	=0,
where the two cylinders are coaxial, has already been treated
in �14�: there the stability analysis was brought far beyond
the marginal modes, and the planar, radial solution n0 was
shown to be locally stable for ��e� and locally unstable for
��e�. Our method is capable of arriving differently at the
same conclusion �see Appendix C�. Here we heed that this
result has consequences on the problem at hand: by continu-
ity, we conclude that for 	�0 the region S delimited in Fig.
2 by the path of marginal modes is the stability domain for
the planar solution n0�e�. Correspondingly, the comple-
mentary region U is the domain of instability.

According to Eq. �2.12�, all straight lines in the �� ,	�
plane parallel to 	=�−1 represent cylinders with different
radii ri and ro, but equal normalized separation 
=h /ri. One
such line is represented in Fig. 2 as a dashed line: in the limit
as �→�, the outer cylinder approaches a flat wall at the
prescribed distance from the inner cylinder. Whatever the
value of 
, the planar solution n0 becomes unstable for suf-
ficiently large values of �. For given �, increasing 	 towards
its allowed maximum �−1 reduces down to nothing the
separation between cylinders of fixed radii. If ���*, the
planar solution remains stable for all separations between the
cylinders. If ���*, the planar solution becomes eventually
unstable before the cylinders are brought in contact. In par-
ticular, the planar solution between a cylinder and a flat wall
with homeotropic anchoring is unstable, whatever be the
separation between cylinder and wall.

Whenever the planar solution n0�e� is unstable, the elas-
tic free energy F is bound to decrease if the director n flips
out the �e� ,e�� plane, thus acquiring a component along ez.
The nature of this escaped solution that replaces n0 as energy
minimizer is explored in the following section. In our nu-
merical exploration, the transition to the escaped solution
prompted by the instability of the planar solution was found
to be continuous, with no hysteresis, and so, in the language
of critical phenomena, we may say that this is a second-order
transition.

IV. ESCAPED SOLUTION

Here, we study in detail the structure of the locally stable
equilibrium configuration that bifurcates from n0�e� when
the parameters are chosen in the region U of the �� ,	� plane.
We shall solve numerically the equilibrium equation by the
over-relaxation method �16� �see Appendix B for details�.
First, we parametrize the director field n as

n = sin � cos �e� + cos � cos �e� + sin �ez, �4.1�

where the angle ���−�� 2 , �� 2� measures the escape of n
out of the �e� ,e�� plane, and ���−�� 2 , �� 2� measures
how much the planar projection of n wobbles about e�. The
restrictions imposed on � and � reduce Eq. �4.1� to describe
half a sphere around the axis e�, thus removing the usual
degeneracy that regards n and −n as equivalent. We seek

FIG. 2. Stability diagram in the �� ,	� plane. The equilibrium
configuration n0�e� is locally stable in the region S, while it is
unstable in the region U. The straight line 	=�−1 is the locus
where the inner and outer cylinders are tangent to one another: only
the region 	��−1 in the positive quadrant of the �� ,	� plane is
admissible. In general, the dashed line 	=�−1−
 is the locus
where the two cylinders are at a fixed scaled distance 
=h /ri. In-
creasing � along one of these lines amounts to increasing both the
radius ro of the outer cylinder and the eccentricity d, while keeping
the distance between the cylinders fixed. Asymptotically, the outer
cylinder becomes infinite. In that limit, the planar configuration
n0�e� is unstable, whatever be the distance between the cylinders.
The path separating S and U touches the line 	=�−1 at �*

�8.46 and the line 	=0 at �=e��23.14; the maximum extension
in the 	-direction occurs at 	=	*�9.62 and �=�*�17.01.
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solutions to Eq. �2.3� in the form �4.1�, where both � and �
depend on � and �, but are independent of z. By Eq. �A10�,
perusal of Eqs. �A3�–�A9� combined with algebraic manipu-
lations yield

��n�2 = H2��,�
2 + �,�

2 + cos2 ��	�,� −
sinh �

cosh � − cos �

2

+ 	�,� +
sin �

cosh � − cos �

2�� , �4.2�

where a comma stands for partial differentiation. Since the
Jacobian of the change of variables �2.4� is �J � =1/H2, it
follows from Eq. �2.1� that the elastic energy F per unit
height of the cylinder is

F�n� ª
�

2
�

�o

�i

d��
0

2�

d�� , �4.3�

where, with the aid of Eq. �4.2�, � is defined by setting
H2�ª ��n�2. The Euler equations associated with Eq. �4.3�
are

�

��
	 ��

��,�

 +

�

��
	 ��

��,�

 −

��

��
= 0, �4.4a�

�

��
	 ��

��,�

 +

�

��
	 ��

��,�

 −

��

��
= 0, �4.4b�

which, by Eq. �4.2�, explicitly read as

cos2 ���,�� + �,��� − 2 sin � cos �	�,��,� + �,��,�

+
1

cosh � − cos �
�sin ��,� − sinh ��,��
 = 0,

�4.5a�

�,�� + �,�� + sin � cos ��	�,� −
sinh �

cosh � − cos �

2

+ 	�,�

+
sin �

cosh � − cos �

2� = 0. �4.5b�

Subjecting n in Eq. �4.1� to homeotropic boundary condi-
tions on both cylinders at �=�o and �=�i amounts to requir-
ing that

���,�o� = ���,�i� = 0 and ���,�o� = ���,�i� = 0,

∀ � � �0,2�� �4.6�

and to subjecting both � and � to periodic boundary condi-
tions at �=0 and �=2�. It follows from Eqs. �4.5a� and
�4.6�1 that there are no equilibrium director fields in the
�e� ,ez� plane, apart from n�e�. To see this, we set ��0 in
Eq. �4.5a�, which by Eq. �4.6�2 is thus resolved in a di-
chotomy: either ��0 or

sin ��,� − sinh ��,� � 0. �4.7�

Now, since H�0, it follows from Eqs. �3.4� and �A7� that
Eq. �4.7� is equivalent to

�H � �� =
H2

c
�sin ��,� − sinh ��,��ez = 0 .

Thus if �� does not vanish identically, it must be parallel to
�H. In particular, this implies that �H ·e�=0 at both �=�i
and �=�o. Since �H ·e�= H � c sin � does not vanish identi-
cally for any given �, we conclude that ��0⇒��0.

There is an even more concise way to express � in Eq.
�4.3�. By Eq. �A4�, the angle �0 that e� makes with −ex �see
also Fig. 1� is characterized by

cos �0 =
cosh � cos � − 1

cosh � − cos �
. �4.8�

For given �, �0 ranges in the interval �0,�� for �� �0,��,
and in the interval �−� ,0� for �� �� ,2��. Inverting sepa-
rately in these intervals the function �0 defined by Eq. �4.8�,
one shows that

�0,� =
sinh �

cosh � − cos �
and �0,� = −

sin �

cosh � − cos �
.

�4.9�

Thus letting �ª�−�0 denote the angle that the projection
of n on the plane �ex ,ey� makes with −ex �see Fig. 1�, we can
rewrite � as

� = ��,�
2 + �,�

2 � + cos2 ���,�
2 + �,�

2 � . �4.10�

It follows from Eqs. �4.6� and �4.8� that �=−�0 for both �
=�o ,�i and that �0 is odd relative to the mirror symmetry
about the line �=�: formally, �0�2�−� ,��=−�0�� ,��.
Moreover, � is subject like � to periodic boundary condi-
tions at �=0 and �=2�. Equation �4.10� illustrates well the
competition between planar and escaped director configura-
tions: while a planar field with ��0 would minimize the
first bracket, it cannot make the second identically zero as
well since this would reduce n to ex thus violating the an-
choring conditions on the bounding cylinders. Hence ��,�

2

+�,�
2 � can be viewed as the cost that a planar configuration

has to pay to obey the boundary conditions. This frustration
involves larger distortions of �, which can be partly relaxed
if the cos2 � factor in Eq. �4.10� becomes strictly less than 1,
that is, if the director field flips out of the �ex ,ey� plane. Such
a gain in energy will have to be balanced against the cost
incurred in the bracket ��,�

2 +�,�
2 �. That cost will be higher in

the gap between the inner cylinder and the outer cylinder,
which is why one expects to see the out-of-plane structure
developing on the more spacious opposite side of the inner
cylinder.

Among the solutions to Eqs. �4.5� the minimizers of F
were found by applying the relaxation method to appropriate
initial guesses �see Appendix B�. The scaled energy density
� in Eq. �4.10� is invariant under a change of sign in �; this
mirrors the symmetry between two opposite ways of escape
for n, that is, along ez and along −ez. To remove this obvious
degeneracy, we restrain � to the interval �0, �� 2�. Within
numerical accuracy, the minimizers of F thus found turned to
enjoy the symmetry properties
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��2� − �,�� = − ���,��, ��2� − �,�� = ���,��, ∀ �

� ��o,�i� . �4.11�

Differently said, � and � are found odd and even, respec-
tively, relative to the mirror symmetry about �=�. Likewise,
by Eq. �4.8�, � is also odd. Since, by Eq. �2.4�, both �=0 and
�=� correspond to y=0, by use of Eqs. �4.1�, �A3�, and
�A4�, Eqs. �4.4� make the corresponding director field n in
space mirror symmetric relative to the �ex ,ez� plane. It is
readily shown that both the energy density �4.10� and the
equilibrium equations �4.5� are invariant under the transfor-
mation in Eq. �4.11�. Though this does not suffice to prove
that all energy minimizers are mirror symmetric with respect
to the plane �ex ,ez�, it supports the numerical evidence. Ana-
lytically, Steiner’s symmetry rearrangement applied to a ten-
tative minimizer � fails to imply by classical theorems that
the actual minimizer � is symmetric about �=�, as the func-
tion ��,�

2 +�,�
2 � in Eq. �4.10� cannot be assumed to depend on

� only �see Theorem 2.31 of �17��.
In the following we shall assume that Eqs. �4.11� hold and

we shall represent both � and � only for �� �0,��, though
they are obtained by the relaxation method in the whole in-
terval �0,2��.

Figures 3 and 4 show the three-dimensional �3D� plots of
��x ,y� and ��x ,y� for y�0 when �=12 and 	=10: the
former exhibits a bump, and the latter a dip. To study in more
detail the structure of the escaped field, we determine the

point ��̂� , �̂�� where ��� ,�� attains its maximum and the

point ��̂� , �̂�� where � attains its minimum. In Fig. 5�a� are
plotted the functions ��� , �̂�� and ��� , �̂�� against �, in Fig.

5�b� are plotted the functions ���̂� ,�� and ���̂� ,�� against
�: they represent special curvilinear cross sections of the 3D
plots shown in Figs. 3 and 4. Other cross sections look alike,
apart from showing less pronounced bumps and dips. The
escape of the equilibrium solution along ez is larger than the
wobbling of its projection onto the �e� ,e�� plane about e�.
Figure 6 is the analog of Fig. 5 for 	=2 and �=24. In this
case both � and � depend only weakly on �. This is indeed
a general feature: when the eccentricity of the two cylinders

FIG. 3. �Color online� The 3D plot of ��x ,y� when 	=10 and
�=12. Since the solution is symmetric with respect to the ex axis,
only the half with y�0 is drawn.

FIG. 4. �Color online� The 3D plot of ��x ,y� when 	=10 and
�=12. As in Fig. 3, only the half with y�0 is drawn.

FIG. 5. Structural details of the escaped solution for 	=10, �
=12. These plots are obtained by taking curvilinear cross sections of
both 3D plots shown in Figs. 3 and 4. The cross sections of the

graph of � are at �= �̂� and �= �̂�. The cross sections of the graph

of � are at �= �̂� and �= �̂�. In �a� are plotted the functions ��� , �̂��
�continuous line� and ��� , �̂�� �dashed line� against �� �0,��. In

�b� are plotted the functions ���̂� ,�� �continuous line� and ���̂� ,��
�dashed line� against �� ��o ,�i�.
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is small, the equilibrium director field resembles the one for
	=0, which depends only on the radial coordinate r and lies
in the �er ,ez� plane �14� �see also Appendix C�.

V. TRANSMITTED FORCE AND TORQUE

In this section we compute the force F and the torque M
exerted on the inner cylinder when the nematic liquid crystal
enclosed within the outer cylinder is in its locally stable
equilibrium. By Newton’s third law, the opposite force and
torque are exerted on the outer cylinder. Before actually
computing F and M we present a general symmetry argu-
ment that, once applied to the problem at hand, identifies the
nontrivial components of both F and M.

A. Symmetry

In general, a nematic liquid crystal transmits both a force
FS and a couple mS onto an orientable surface S in contact
with it: these mechanical actions are expressed by the formu-
las

FS = �
S

T�E��dA �5.1�

and

mS = �
S

L�dA , �5.2�

where � is the unit normal of S oriented towards the region
occupied by the liquid crystal. In Eq. �5.1�, T�E� is Ericksen’s
stress tensor �18�, which for a general elastic energy density
W=W�n ,�n� is given by

T�E�� = W� − ��n�T	 �W

� � n

� , �5.3�

for all unit vectors �. In Eq. �5.2�, L is Leslie’s couple stress
�19�, which is defined by

L� = n � 	 �W

� � n

� , �5.4�

for all unit vectors �. It follows from Eqs. �5.1� and �5.2� that
the total torque MS exerted on S relative to a point o in space
is given by

MS = �
S

x � T�E��dA + mS, �5.5�

where xªp−o is the position vector of the current point p on
S.

Suppose now that the region B containing the liquid crys-
tal and the director field n defined in B are subject to a
transformation that maps a point p�B into p*�B* and as-
signs to p* the director n*�p*� according to the stipulations

p* − o = Q�p − o� , �5.6�

n*�p*� = Qn�p� , �5.7�

where Q is an orthogonal tensor, independent of the position
p, for which

QTQ = I , �5.8�

so that

det Q = ± 1. �5.9�

Under the transformation in Eqs. �5.6� and �5.7�, the tensors
�n and �W

��n are changed into

�n* = Q��n�QT and
�W

� � n* = Q	 �W

� � n

QT, �5.10�

respectively, while W, being a scalar, is left unchanged �see
Sec. 3.1.1 of �20��. Since the unit normal � to the point p* on
S* is given by

�* = Q� , �5.11�

we easily conclude from Eqs. �5.3�, �5.8�, and �5.10� that

FIG. 6. Structural details of the escaped solution for 	=2, �
=24. These plots were obtained precisely as in Fig. 5. Since here the
eccentricity of the two cylinders is appreciably smaller than in Fig.
5 �	 is 2 instead of 10�, both � and � depend weakly on � and �
scarcely departs from zero.
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T�E�*�* = QT�E�� . �5.12�

Similarly, by Eq. �5.4� and the property of the adjugate of a
tensor �see Secs. 2.2.5 and 2.2.6 of �20��,

L*�* = Qn � Q	 �W

� � n

� = �det Q�QL� . �5.13�

By applying Eqs. �5.1� and �5.2� to the surface S* and heed-
ing that the Jacobian of the transformation �5.6� is 1, we
conclude that the force FS* and the couple mS* acting on S*

are

FS* = QFS and mS* = �det Q�QmS. �5.14�

Similarly, it follows from Eq. �5.5� that the total torque MS*

on S* is

MS* = �det Q�QMS. �5.15�

These equations relate in general the mechanical actions on
S* to those on S. They become more stringent and predictive
whenever Eqs. �5.6� and �5.7� describe a symmetry transfor-
mation for which B*=B and n*=n. If this is the case, FS*,
mS*, and MS* are the same as FS, mS, and MS, respectively,
and so, by Eqs. �5.14�, �5.15�, and �5.9�, FS is an eigenvector
of Q with eigenvalue 1, while both mS and MS are eigenvec-
tors of Q with eigenvalue 1/det Q.

We now apply this theorem to the force F and the torque
M exerted on the inner cylinder in our problem. The equilib-
rium director field n in the class we have chosen above is
symmetric about the �ex ,ez� plane, that is, it obeys Eqs. �5.6�
and �5.7� when Q is the reflection about this plane:

Q = I − 2ey � ey , �5.16�

for which det Q=−1. The only eigenvector of Q in Eq.
�5.16� with eigenvalue −1 is ey, whereas both ex and ez are
eigenvectors of Q with eigenvalue +1. Thus, by the theorem
above,

F · ey = 0 and M = Mey . �5.17�

In the problem at hand, the first of these equations can be
further specialized. The admissible director fields n are taken
here to be independent of z, and so ��n�ez=0. Moreover, for
a cylinder parallel to the z axis the unit normal � to its lateral
boundary is such that � ·ez�0. Thus the surface traction in
Eq. �5.3� satisfies

ez · T�E�� � 0,

and so does F. Hence

F = Fex. �5.18�

In the following two sections, we compute the nontrivial
components of F and M, that is, F and M in Eqs. �5.18� and
�5.17�.

B. Force

When W= 1
2���n�2, as in Eq. �2.1�, Ericksen’s stress ten-

sor reads

T�E�
ª �� ��n�2

2
I − ��n�T��n�� . �5.19�

Correspondingly, the nontrivial component of F per unit
height of the inner cylinder is given by

F = �
C

ex · T�E��d� , �5.20�

where C is the inner circle bounding B, �=−e� is the outer
unit normal vector to C, and � is the arclength along C.

To give Eq. �5.20� a simple computable form, it is expe-
dient to use the following hybrid representation for n:

n = cos � cos �ex + cos � sin �ey + sin �ez, �5.21�

where, as above, �=�−�0. It follows from Eq. �5.21� that

�n = ex � ��cos � cos �� + ey � �cos � sin ��

+ ez � ��sin �� , �5.22�

where, since both � and � are functions of bipolar coordi-
nates �� ,��, the gradients on the right-hand side must be
computed as in Eq. �A7�. Heeding that d� /d�=1/H, also by
Eqs. �A3� and �A4�, we finally express Eq. �5.20� as

F = −
�

c
�

0

2� �1

2
�1 − cosh �i cos ����,�

2 − �,�
2 + cos2 ���,�

2

− �,�
2 �� + sinh �i sin ���,��,� + cos2 ��,��,���d� ,

�5.23�

where all functions in the integrand are computed at �=�i.
This formula was employed to calculate numerically F.

In the special case ��0 and ��−�0, use of Eq. �4.8�
leads us to

F =
��

c
. �5.24�

By Eq. �2.11�, we can express Eq. �5.24� in terms of the
scaled distance 
=h /ri between the cylinders:

F =
2���� − 
 − 1�

ri
��2
 + 
2���2� − �
 + 1��2 − 1�

. �5.25�

In the limit where 
�1, the leading term in h in Eq. �5.25�
is

F =
��

�ri
�2h

�� − 1

�
. �5.26�

In particular, when �→ +�, and so the outer cylinder ap-
proaches a flat wall, F diverges as 1/�h, in accordance with
the conclusions of Sonnet and Gruhn in �11�, where a flat
wall replaced the outer cylinder.

C. Torque

In the one-constant approximation, Ericksen’s stress ten-
sor is symmetric �see Eq. �5.19��. Thus by the divergence
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theorem, the integral in Eq. �5.5� vanishes whenever S is a
closed surface. Here the total torque M then results only
from the surface couples. It follows from Eq. �5.17� that the
nontrivial component of M per unit height of the inner cyl-
inder is given by

M = �
C

ey · L�d� . �5.27�

Since in the one-constant approximation

�W

� � n
= � � n ,

Eq. �5.4� becomes

L� = �n � ��n�� .

The outer unit normal � to the lateral surface of the inner
cylinder is �=−e�. With the aid of both Eqs. �5.21� and
�5.22� we arrive at

M = − ��
0

2�

�cos ��,� + sin � cos � sin ��,��d� ,

�5.28�

where again the integrand is computed at �=�i.

D. Numerical results

Forces and torques must be computed on stable equilib-
rium solutions. We saw in Sec. III that the planar solution
n0�e� is stable only when the dimensionless parameters
�� ,	� are chosen within the region S in Fig. 2. In particular,
if the ratio �=ro /ri exceeds the critical value �*�8.46, the
planar solution loses its stability whenever the cylinders are
drawn sufficiently close to one another, that is, whenever the
dimensionless distance 
=h /ri between them becomes small
enough. Alternatively, for given 
, the point �� ,	� falls
within the unstable region U whenever � is sufficiently large.
Both these ways of crossing the border between S and U are
explored below: F and M, as given by Eqs. �5.23� and �5.28�,
respectively, are computed in U on the escaped solution.

To appreciate the structural changes that the escaped so-
lution undergoes upon varying the parameters � and 	 we
also record the maximum value �max attained by the tilt
angle � across the region B as well as the spatial averages
����� and ��� defined as

����� ª
�

�o

�i

d��
0

2�

d�
1

H2 ����,���

A�B�

��� ª
�

�o

�i

d��
0

2�

d�
1

H2���,��

A�B�
, �5.29�

where A�B�=��o

�i d��0
2�d�

1
H2 is the area of B, and 1/H2 is the

Jacobian �J� of bipolar coordinates.

Figure 7 shows both F and M computed for 
=10 as
functions of ��15. For 15���20.6, the point �� ,	� falls
within the stability domain S for the planar solution, and so
F is computed according to Eq. �5.25�, while, in accordance
with Eq. �5.28�, M vanishes identically. For ��20.6, we
computed F on both the planar and the escaped solutions: the
corresponding graphs are represented by dashed and solid
lines, respectively. The graph of M in Fig. 7�c� corresponds
to the escaped solution, as M �0 for the planar solution. On
the escaped solution, F is a monotonically decreasing func-
tion of �, whereas M is monotonically increasing. The angle
�max and the averages in Eq. �5.29� all increase with � and
saturate to a plateau; in particular, �max approaches 90° as
�→�. Figure 8 shows similar graphs for 
=15. The only
qualitative difference with the graphs in Fig. 7 is in the be-
havior of F, which here fails to be monotonically decreasing
in � on the escaped solution: it attains its maximum at a
value of � close to, but different from the bifurcation point.

Ideally, keeping 
 fixed and varying �, we imagine to
hold the inner cylinder fixed, while enclosing it within a
cylinder of increasing radius kept at the same distance. This
eventually destabilizes the planar solution. A different way to
do this is by keeping 	 fixed while increasing �. In such a
way, the distance between the cylinders’ axes is kept fixed,
while both the radius of the outer cylinder and the separation
between the two cylinders are increased. By Eq. �2.12�, in
the limit as �→� the outer cylinder is almost flat, while the
inner cylinder is at the greatest distance from it. In Fig. 9, F
and M are shown as functions of �, for 	=5. F is monotoni-
cally decreasing in � on both planar and escaped solutions
and tends to zero when �→�. M first increases and then
decreases asymptotically to zero as �→�. The vanishing of
both F and M as �→� does not surprise us, since in this
limit the distance between the two cylinders diverges.
Clearly, we cannot expect appreciable mechanical actions on
the inner cylinder in this case.

So far � was varied, while either 
 or 	 was kept fixed.
Thus we studied the effect of curvature on both the force and
the torque transmitted by the liquid crystal in its stable equi-
librium configuration. To study the effects of the distance
between the cylinders, we now fix � and explore the behav-
ior of F and M when 
 is varied. The bilogarithmic plot in
Fig. 10 shows the behavior of F as a function of 
 for �
=20 on both the planar and the escaped solutions. Here, by
Eq. �2.12� 
 ranges in the interval �0, 19�, and the planar
solution is stable for 
�9.2. For 
�9.2, the forces on the
escaped and the planar solutions do not differ much: they
tend to coalesce for 
�1.

We assume that in the limit as 
→0 F obeys the power
law F=
�, where the limiting exponent � is given by �10�

� ª lim

→0




F

dF

d

. �5.30�

It follows from Eq. �5.26� that the limiting exponent, if com-
puted on the planar solution is �p= 1

2 . We evaluated the lim-
iting exponent �e on the escaped solution for several values
of �. The difference �e−�p is plotted in Fig. 11: though it
increases when � becomes larger, it never exceeds 0.03. For
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���*�8.46, the planar solution is unstable, but its limiting
exponent is very close to the limiting exponent computed
numerically on the stable escaped solution.

VI. CONCLUSIONS

We studied within the elastic director theory the equilib-
rium problem for a nematic liquid crystal confined within

FIG. 7. �a� Plot of the elastic force F computed on the locally
stable equilibrium configuration �solid line�. It only lacks monoto-
nicity at the point where the escaped solution bifurcates from the
planar one. The dashed line represents the force Fp transmitted by
the planar solution when it ceases to be locally stable. �b� Plot of the
elastic torque M transmitted by the escaped solution. �c� Plots
against � of the maximum value �max of the tilt angle � together
with the spatial averages ��� and ����� defined according to Eq.
�5.29�. When � increases, all these quantities approach asymptotic
values. All these graphs have been obtained at a fixed value 
=10
of the dimensionless distance 
=h /ri between the cylinders. Here
and in the following figures, F is scaled to � /ri, while M is scaled
to �.

FIG. 8. This figure contains the plots of the same quantities as in
Fig. 7, but for 
=15. Two changes are worth noting in comparing
these graphs with those in Fig. 7. First, increasing 
 for a given �
decreases the value of all quantities F, M, �max, ���, and �����.
Second, there is a critical value of �, different from the bifurcation
point, at which the elastic force F transmitted by the escaped solu-
tion attains its maximum.
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two parallel eccentric cylinders enforcing homeotropic an-
choring on the lateral boundaries. The stability analysis re-
vealed that the planar equilibrium configuration is unstable
when either the radius of the outer cylinder is sufficiently
larger than the radius of the inner cylinder or the distance
between the cylinders is sufficiently small. In particular,

when the outer cylinder degenerates into a flat wall, the pla-
nar solution is unstable for all separations between the wall
and the remaining cylinder. When the planar solution loses
its stability an escaped solution takes its place: the director

FIG. 9. Plots of the same quantities as in Figs. 7 and 8, but for
	=5. The force F is a decreasing function of � on both the planar
and the escaped solution that approaches zero when �→�. The
torque transmitted by the escaped solution is rather small and at-
tains its maximum for � close to the bifurcation point. The struc-
tural parameters �max, ���, and ����� are much smaller than their
counterparts in Figs. 7 and 8 at a given �.

FIG. 10. �a� Bilogarithm plots of the force F computed on the
escaped �Fe� and planar �Fp� solutions as a function of the dimen-
sionless distance 
=h /ri between the cylinders for �=ro /ri=20.
Here 0�
�19; the stability domain for the planar solution is
crossed at 
=9.2. Fe and Fp show a similar behavior as 
→0+. �b�
Bilogarithm plot of the torque M, computed on the escaped solu-
tion, as a function of 
.

FIG. 11. Difference �e−�p between the limiting exponent �e of
the force F computed as in Eq. �5.30� for the escaped solution and
the limiting exponent �p= 1

2 determined analytically from Eq. �5.26�
for the planar solution. The squares correspond to the values of �
for which �e was actually computed.
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not only flips out of the plane orthogonal to the cylinders’
axes, but its projection onto this plane also wobbles about the
field lines of the planar equilibrium configuration. On this
structure, the mechanical actions that the liquid crystal trans-
mits from one cylinder to the other were also computed: both
the force and the torque transmitted by the escaped solution
were found to be monotonic functions of the distance h be-
tween the cylinders. When h is very small, the force diverges
with a power law that only slightly differs from the 1/�h
behavior predicted by Sonnet and Grühn �11�, though their
analysis strictly applies only to the planar solution, which we
found unstable when the outer radius is sufficiently large.

The results of this paper are to be contrasted with those
obtained by McKay and Virga �10�, who studied within the
order-tensor theory the equilibrium problem for a cylinder
and a flat wall. They computed mechanical actions that were
not monotonic functions of the distance between cylinder
and wall. They interpreted such a lack of monotonicity as the
onset of a snapping instability bringing the liquid crystal
from the escaped structure into the planar structure in an
ideal force—or torque—controlled experiment. The struc-
tural change accompanying this transition is signaled by a
certain degree of biaxiality that arises in the vicinity of the
cylinder in response to its curvature. Within the director
theory these changes cannot be appreciated, and so they
might indeed be real, thus justifying a nonmonotonic order
force as opposed to a monotonic elastic force.

Whether this is the right way to reconcile the findings of
this paper with �10� is not clear. A major obstacle still lies in
the class of order tensors employed in �10�. These had ev-
erywhere e� as an eigenvector, which in the uniaxial limit
amounts to say that the director n is either parallel to e� or
orthogonal to it. This dichotomy is not confirmed by our
analysis, which showed how in the escaped solution n can
have nonvanishing components along all vectors of the mov-
able frame �e� ,e� ,ez�. Thus the class of order tensors em-
ployed in �10� proves to be too narrow to encompass all the
director equilibrium solutions found here, while it is large
enough to describe the effects of biaxial order on the elastic
force and torque. It remains to be seen whether these two
studies can be reconciled within a general unconstrained
class of order tensors.
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APPENDIX A: BIPOLAR CYLINDRIC COORDINATES

Much in the spirit of Appendix A of �15�, we collect in
this Appendix some mathematical properties of cylindric bi-
polar coordinates, which have been extensively used in this
paper. In general, for a set of orthogonal curvilinear coordi-
nates �q1 ,q2 ,q3�, the metrical coefficients �h1 ,h2 ,h3� are de-
fined as

hk ª
1

��x/�qk�
,

where x is the position vector of a point in the Euclidean
space. For cylindric bipolar coordinates,

q1 = �, q2 = �, q3 = z , �A1�

and so we have

h1 = h2 = H ª

1

c
�cosh � − cos ��, h3 = 1. �A2�

The unit tangent vector ek to the coordinate curve qi=const,
qj =const �i� j�k� is given by

ek ª hk
�x

�qk
,

where repeated indices are not summed. It follows from Eqs.
�2.4� and �A1� that

e� = − � sinh � sin �

cosh � − cos �
ex +

1 − cosh � cos �

cosh � − cos �
ey� , �A3�

e� = �1 − cosh � cos �

cosh � − cos �
ex −

sinh � sin �

cosh � − cos �
ey� , �A4�

from which one obtains

�e� =
1

c
�sinh �e� � e� − sin �e� � e�� �A5�

and

�e� =
1

c
�− sinh �e� � e� + sin �e� � e�� . �A6�

Moreover, the gradient �� and the Laplacian �� of a
smooth scalar field � in cylindric bipolar coordinates are
expressed as

�� = H	 ��

��
e� +

��

��
e�
 +

��

�z
ez, �A7�

�� = H2	 �2�

��2 +
�2�

��2
 +
�2�

�z2 . �A8�

Equation �A7� can also be rewritten as

�� = �
� +
��

�z
ez,

where

�
� ª H	 ��

��
e� +

��

��
e�
 �A9�

is the planar gradient of �. In particular, it follows from Eq.
�A8� that ��=��=�z=0.

Similarly, for a vector field

u = u�e� + u�e� + uzez

with components �u� ,u� ,uz� smooth scalar functions of
�� ,� ,z�,

�u = u� � e� + e� � �u� + u� � e� + e� � �u� + ez � �uz

�A10�

and
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�u = ��u� −
u�

H
�H + 2H	 �H

��

�u�

��
−

�H

��

�u�

��

�e� + ��u�

−
u�

H
�H + 2H	 �H

��

�u�

��
−

�H

��

�u�

��

�e� + �uzez, �A11�

where

�H

H
=

1

c2 �cosh2 � − cos2 �� . �A12�

By Eq. �A9�, Eq. �A11� can also be given the following
form:

�u = ��u� −
u�

H
�H −

2

H
��
u� � �H� · ez�e� + ��u�

−
u�

H
�H +

2

H
��
u� � �H� · ez�e� + �uzez. �A13�

For u=e�, Eqs. �A13� and �A12� yield Eq. �2.13�.
To ease the comparison between the different definitions

of cylindric bipolar coordinates employed here and in �10�,
we heed that x and y are interchanged in the two papers and
that the triple �� ,� ,c� introduced here corresponds to the
triple ��−u ,v ,a� of �10�.

APPENDIX B: NUMERICAL METHODS

We used the over-relaxation method �16� to solve the Eu-
ler equations �4.5� and to perform the stability analysis of the
planar configuration through Eqs. �3.7� and �3.8�. Bipolar
cylindric coordinates were discretized according to the stipu-
lations � j = �j−1���, �k= �k−1���+�i, ��= 2�

N�−1 , ��=
�o−�i

N�−1 ,
where j and k are integers �j� �1,N��, k� �1,N���, and �o

=�N�
, �i=�1. We systematically chose N�=N�=100. We fur-

ther expressed the discretized derivatives of a function
��� ,�� at a point �� j ,�k� in the usual way. Periodic boundary
conditions were imposed at �=0 and �=2� while strong
boundary conditions at the cylinders’ walls are enforced by
setting � j,1=� j,N�

=0, where � j,kª��� j ,�k� and � was either
� or �.

The set of difference equations for � j,k was solved by an
iteration procedure that was stopped whenever the difference
between the new and old value of � j,k was less than �
=10−8. We imposed this stringent criterion to determine ac-
curately the transitional details at the second order transition.
Increasing the number of grid points and decreasing � did
not affect the results to within the desired accuracy �0.1% �.
The robustness of the method against the choice of the initial
guess function � was checked so that most computations
have been performed by taking at the beginning � constant
within the capillary.

More exactly, to obtain the stability diagram shown in
Fig. 2, we checked whether the perturbation u relaxes to 0 or
moves away from it. This latter behavior could be detected
after a few iterations and served to mark the transition line
separating the stable set S from the unstable set U. An indi-
rect confirmation of these results is obtained by solving the
Euler equations �4.4�, which give structural details of the

escaped solution. The structural transition between the planar
and escaped solutions was found to be continuous.

APPENDIX C: COAXIAL CYLINDERS

Here, we apply the stability criterion put forward in �13�
to derive the result obtained by Bethuel et al. in �14� on the
instability of the radial configuration of the director n0�er
within two coaxial cylinders parallel to ez. In cylindrical co-
ordinates �r ,� ,z� the region occupied by the liquid crystal is
described by the inequalities

ri � r � ro, 0 � � � 2�, and − a � z � a .

Strong anchoring is enforced at r=ri and r=ro, whereas pe-
riodic boundary conditions are enforced on the fictitious
boundaries at z= ±a. The radial configuration n0�er solves
Eq. �2.2� with

� =
�

r2 .

We consider perturbations u of n0 depending solely on r, that
is, we set

u = u��r�e� + uz�r�ez.

Since this parametrization guarantees that the constraint �3.2�
is obeyed, we can set 
=0 in Eq. �3.1�; this latter equation
now reads as

	�u� −
u�

r2 
e� + �uzez + 	� +
1

r2
�u�e� + uzez� = 0 .

�C1�

Projecting this equation along the movable frame �er ,e� ,ez�,
we get

�ru�� �� + �ru� = 0, �C2�

�ruz��� + r	� +
1

r2
uz = 0, �C3�

where a prime stands for differentiation with respect to r.
Strong anchoring at the bounding cylinders requires that

u��ri� = u��ro� = 0 and uz�ri� = uz�ro� = 0.

Just the same strategy adopted in Sec. III to prove that u�

�0 shows here that unstable modes have u��0. Hence we
limit attention to Eq. �C3� where we set rªexri obtaining

uz��x� + �1 + �e2x�uz�x� = 0, �C4�

where now a prime denotes differentiation with respect to x,
whereas � has been rescaled to ri

2. Equation �C4� is subject
to the boundary conditions

uz�0� = uz�x0� = 0,

where x0=ln �. It follows from the Sturm-Liouville theory
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�see Chap. VII of �21�� that the eigenvalue associated with an
eigenfunction u of Eq. �C4� is given by

� =

�
0

x0

��u��2 − u2�dx

�
0

x0

u2e2xdx

. �C5�

Moreover, by Wirtinger’s inequality �see p. 185 of �22��,

�
0

x0

u�2dx � 	 �

x0

�

0

x0

u2dx �C6�

for all u vanishing at the end points of the interval �0,x0�.
Combining Eqs. �C5� and �C6�, we see that if ��x0 then
��0, and so there are neither unstable nor marginal modes
for Eq. �C1�. Thus the radial solution n0 is stable whenever
�0�e�. For x0=�, a direct inspection of Eq. �C4� with �
=0 reveals the existence of a marginal mode. This proves
that �=e� marks the limit of stability for the planar solution
in the case of coaxial cylinders �14�.
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